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Abstract

The problem of a tube under pure bending is first solved as a generalised plane strain problem. This then provides the

prebifurcation solution, which is uniform along the length of the tube. The onset of wrinkling is then predicted by

introducing buckling modes involving a sinusoidal variation of the displacements along the length of the tube. Both the

prebuckling analysis and the bifurcation check require only a two-dimensional finite element discretisation of the cross-

section with special elements. The formulation does not rely on any of the approximations of a shell theory, or small

strains. The same elements can be used for pure bending and local buckling a prismatic beam of arbitrary cross-section.

Here the flow theory of plasticity with isotropic hardening is used for the prebuckling solution, but the bifurcation

check is based on the incremental moduli of a finite strain deformation theory of plasticity.

For tubes under pure bending, the results for limit point collapse (due to ovalisation) and bifurcation buckling

(wrinkling) are compared to existing analysis and test results, to see whether removing the approximations of a shell

theory and small strains (used in the existing analyses) leads to a better prediction of the experimental results. The small

strain analysis results depend on whether the true or nominal stress–strain curve is used. By comparing small and finite

strain analysis results it is found that the small strain approximation is good if one uses (a) the nominal stress–strain

curve in compression to predict bifurcation buckling (wrinkling), and (b) the true stress–strain curve to calculate the

limit point collapse curvature.

In regard to the shell theory approximations, it is found that the three-dimensional continuum theory predicts slightly

shorter critical wrinkling wavelengths, especially for lower diameter-to-wall-thickness ðD=tÞ ratios. However this dif-

ference is not sufficient to account for the significantly lower wavelengths observed in the tests. � 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Circumstances under which a pipe or tube will be subjected to plastic bending deformations in the course
of hydrocarbon exploration and production activities include coiled tubing operations, offshore pipeline
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installation by reeling, pulling of the pipe through a J-tube, laying the pipe on an uneven seabed, or cold-
bending of pipe joints for onshore installation. During such operations plastic bending deformations are
acceptable, and even intended. However localised buckling or wrinkling are not acceptable.

There are two ways in which unacceptable deformations can develop in a tube under plastic bending
(Jirsa et al., 1972; Reddy, 1979; Kyriakides and Ju, 1992): buckling due to ovalisation occurs when the loss
of moment capacity due to increasing ovalisation can no longer be offset by the strain hardening of the
material. This causes the moment for a pipe under uniform bending to reach a maximum value (limit
point). Beyond the limit point, the deformations tend to localise rapidly. For thinner walled pipes, wrin-
kling occurs before buckling due to ovalisation. This involves wavy deformations forming on the com-
pression side of the pipe, which grow under increasing curvature and initially increasing bending moment,
and then localise. The initial formation of such wrinkles is a symmetry breaking bifurcation, from a pre-
buckling state for which conditions are constant all along the length of the pipe to one which involves
ripples developing on the compression side of the pipe.

A small increment in bending deformation is generally possible from the point of incipient wrinkling
(bifurcation) until localisation of the deformations in an unacceptable way (Kyriakides and Ju, 1992). This
means that the pipe may be bent slightly beyond the bifurcation strain. For design purposes, however, it is
prudent to neglect this extra bit of deformation capacity. 1 As a result the critical bending deformation is
the lesser of the deformations at the limit and bifurcation points.

Of a number of experimental and analytical investigations of the behaviour of tubes under bending (Jirsa
et al., 1972; Reddy, 1979; Murphy and Langner, 1985; Bai et al., 1995; Kyriakides and Ju, 1992; Ju and
Kyriakides, 1992), the one involving perhaps the most incisive comparison of experimental and analysis
results is the one of Kyriakides and Ju. They obtained excellent agreement between the experimental and
analytical values of the critical bending deformations, by performing very carefully controlled and moni-
tored experiments, as well as measuring all the relevant properties needed for input into the analysis. Their
analysis includes the prebuckling solution (uniform along the length of the pipe), as well as a bifurcation
check (to determine the point at which wrinkling deformations start to develop and the critical wrinkling
wavelength), and even postbifurcation analysis. Their analyses are valid for finite rotations, but employ the
approximations of small strains, and the theory of thin shells.

Despite the excellent agreement between the experimental critical bending strains of Kyriakides and Ju
with their predictions, such excellent agreement was not observed for all parameters: for the wavelength of
the wrinkling mode, the experimental values ranged from 50% to 90% of the predicted ones. There is also a
slight difference in the cross-over point. That is the point where the failure mode changes from (limit point)
buckling due to ovalisation to (bifurcation) wrinkling: with the cross-over point being at D=t ¼ 22 for the
analysis around D=t ¼ 26 for the experiments.

In view of the differences in the wrinkling wavelengths, it is of interest to investigate to what extent these
may be influenced by the approximations of small strains, and the theory of thin shells in the analysis of
Kyriakides and Ju. For this purpose, the analysis is repeated here without relying on the small strain and
shell theory approximations. The results are compared to the analysis and test results of Ju and Kyriakides,
to determine the significance of these effects, and to see to what extent they affect the differences between
analysis and experimental results.

The nomenclature used in the main body of this paper are defined below. For the appendix, an inde-
pendent nomenclature is used, with symbols defined where they are first used.

1 Indeed due to imperfections such as those that can arise due to misalignment offset at girth welds the actual deformation capacity

of the imperfect pipe can fall considerably below that of a perfect pipe (Yoosef-Ghodsi et al., 1994; Souza and Murray, 1994). Such

imperfections are not considered in this paper, however.
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D outer pipe diameter
L half wavelength of the critical wrinkling mode
t wall thickness

The ‘‘nominal bending strain’’ means the curvature of the pipe multiplied by one half the undeformed
outer diameter of the pipe. (Due to ovalisation, this is somewhat larger than then actual axial strain at the
extreme fibres.)

2. Analysis methodology

Details of the analysis methodology are given in the appendix. It is based on the finite strain constitutive
theory quoted in Needleman and Tvergaard (1977), with the J2 flow theory of plasticity being used for the
prebuckling solution, and the J2 deformation theory for the bifurcation check. This approach based on the
flow and deformation theories has also been used by Kyriakides and Ju (1992), and is generally known to
give bifurcation buckling predictions that are in better agreement with experimental results (Batdorf, 1949;
Sanders, 1954; Christofersen and Hutchinson, 1979; Bushnell, 1982; Needleman and Tvergaard, 1982;
Tvergaard, 1983; Blachut et al., 1996).

The generalised plane strain (GPE) formulation used here for the prebuckling solution is not new (Cook,
1989; HKS, 1989; Boussaa et al., 1995, 1996). Essentially it corresponds to a model of a thin slice of the pipe
confined between ideally lubricated plates that can transmit tensile or compressive stresses, but no shear
stresses. This slice model represents a pipe in uniform bending. As a result only the cross-section needs to be
discretised. For this a uniform mesh consisting of 7 elements across the wall thickness by 300 elements
around the half circumference (to make for a total of 2100 elements) is used. The elements are 4-noded
isoparametric quadrilateral GPE elements with a single integration point, and hourglass control according
to the formulation of Belytschko and Ong (1984). These GPE elements have an additional (5th) node, for
which the degrees of freedom represent the curvature and overall axial deformation of the pipe. Any
bending moment and/or axial force acting on the pipe is applied to this extra node.

For the bifurcation check, buckling modes that involve sinusoidal variations of the displacements along
the length of the pipe are introduced. The critical wavelength of these buckling modes is the one for which
bifurcation is first detected. Although formulations that also combine sinusoidal variations for the buckling
modes in one of the coordinate directions with a finite element type discretisation in for the other coor-
dinate have been used in the context of plate and shell theories (Tang et al., 1985), this appears to be the
first formulation and implementation of such an approach for finite strain GPE elements. More infor-
mation on this formulation is given in the appendix.

Avoiding the shell theory and small strain approximations is not the only advantage of the GPE for-
mulation described. It is also an approach that is readily coded if one starts from an existing finite element
code with plane strain element, and existing routines for finite strain computations. This is true for the
bifurcation check as well as the prebuckling solution. It is essentially a plane-strain-like element including
just a few extra terms.

This GPE formulation with a bifurcation check is not only applicable to tubes, but also to any other
cross-sectional shape. For instance one could use the same formulation to predict the buckling of the
flanges of a structural I-beam, of plate girders or even of an airplane wing structure of uniform cross-
section. This versatility of the formulation also creates the possibility to verify it against problems for which
published results are available.

Perhaps the simplest large strain bifurcation under pure bending problem is that of bending of a plate.
For this Triantafyllidis (1980) has shown that the critical bifurcation mode is a surface instability mode on
the compression side. The methodology applied here yielded the same prediction of a surface instability
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mode, and a critical curvature that agreed with that of Triantafyllidis to within the accuracy that the result
could be scaled from Triantafyllids’ paper.

Another large strain bifurcation problem against which the formulation could be verified is that of
necking of a thin sheet. With the formulation developed here, this problem can be solved with a small
number of elements, even when the critical angle at which the band of localised deformation will form is not
known a priori. Indeed the analysis can be set up in such a way that the critical wavelength for the bi-
furcation mode provides this angle. This gives results for the orientation of the band and the critical strains
that are in excellent agreement with the analytical ones from St€ooren and Rice (1975), if the sheet is taken to
be sufficiently thin compared to the possible bifurcation wavelengths, and a high value of Young’s modulus
is chosen to match the rigid-plastic approximation of St€ooren and Rice’s analytical solution.

Although the above verification problems suggest that the method developed also is useful for the study
of bifurcation problems in metal forming, the objective here is to focus on predictions for the bending of
tubes, and the extent to which these may be influenced by finite strain effects, or the approximations of shell
theory. For this purpose it is first necessary to clearly define what stress–strain curves are used in the finite
strain analyses, and how these relate to the stress–strain curves used in the small strain analyses.

3. Matching of stress–strain curves for small and finite strain analyses

In their analyses, Kyriakides and Ju use a Ramberg–Osgood stress–strain relation in the form

e ¼ r
E

1

"
þ 3

7

r
ry

� �n�1
#

ð1Þ

in which E ¼ 104 ksi ð68:95 GPaÞ, ry ¼ 42:6 ksi (293.7 MPa), and n ¼ 29. These represent the ‘‘average
values’’ of the material parameters from a number of ‘‘uniaxial tests on axial specimens’’. From the de-
scription provided, it is not fully clear to which stress and strain measures Eq. (1) applies. For this three
possibilities are considered here:

1. taking Eq. (1) to be the nominal stress–strain relationship in tension,
2. taking Eq. (1) to be the true stress–strain relationship, and
3. taking Eq. (1) to be the nominal stress–strain relationship in compression.

Here the term ‘‘nominal stress–strain relationship’’ is used here to describe the relationship between
nominal stress and engineering strain, and ‘‘true stress–strain relationship’’ is used to describe the rela-
tionship between true stress and logarithmic strain.

From the three cases considered, the implied true stress–strain relationship is the steepest for case (1) and
the flattest for case (3). Thus the highest predictions of buckling and wrinkling strains from the finite strain
analysis can be expected for case (1) and the lowest for case (3). These predictions are given in the following
section, together with the small strain and experimental results of Kyriakides and Ju.

4. Results

The results for the critical bending strains are shown in Figs. 1–3. Specifically, the nominal bending strain
at the limit point (point of maximum bending moment assuming that no wrinkling deformations develop) is
plotted in Fig. 1, the incipient wrinkling (bifurcation) strain in Fig. 2, and Fig. 3 shows the smallest of
these two critical strains for each value of D=t, as well as the cross-over points, where the predicted strains
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for (limit point) buckling due to ovalisation coincide with those for (bifurcation) wrinkling as solid black
triangles. To the left of the cross-over point (smaller D=t) the failure mode is buckling due to ovalisation,
whereas to the right (larger D=t) it is wrinkling. The experimental observations of buckling due to ovali-
sation and wrinkling from Kyriakides and Ju (1992) are also shown in Fig. 3 as circles and crosses re-
spectively. These figures lead to the following observations and explanations:

1. From Fig. 1, in the range 15 < D=t < 25, strains for buckling due to ovalisation from the small strain
(Kyriakides and Ju, 1992) and finite strain (GPE) analyses are in good agreement when the stress–strain
curve for the small strain analysis is the true stress–strain relation. This is not surprising since the uniform
bending stiffness depends on both the stiffness in tension (which is overestimated by the true stress–strain

Fig. 1. Comparison of calculated strains for (limit point) buckling due to ovalisation from the method developed (based on finite strain

continuum theory) with that from Kyriakides and Ju (based on small strains, and use of a shell theory).

Fig. 2. Comparison of calculated strains for incipient wrinkling (bifurcation) from the method developed (based on finite strain

continuum theory) with that from Kyriakides and Ju (based on small strains, and use of a shell theory).
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relation) and the stiffness in compression (which is underestimated by the true stress–strain relation), so that
the errors from the small strain approximation from the tension and compression side balance out for this
case.

2. From Fig. 1, for D=t > 25, the small strain analysis predicts generally higher limit point strains. Al-
though the reason for this is not clear (it could be due to discretisation errors), 2. it is also not so important,
since in this range failure is by wrinkling rather than by (limit point) buckling due to ovalisation.

3. Regarding the incipient wrinkling (bifurcation) strains of Fig. 3, for D=t > 25, the small strain results
coincide almost exactly with the finite strain results, when the stress–strain curve used in the small strain
analysis is the nominal stress–strain curve in compression. This is also not surprising, since wrinkling occurs
in the compression region so that the stiffness of the material in compression is most relevant. Similar
observations have been made comparing Batterman’s (Batterman, 1965, 1967) small strain result for axi-
symmetric wrinkling for a tube under axial loading, with a finite strain version of the same result (Peek,
2000).

4. In the above observations it has been assumed that any differences between the Ju and Kyriakides
analyses and the present one is due to the small strain approximation, and not due to the approximations of
the shell theory. The effects of the shell theory approximation become more apparent in Fig. 2, for
D=t < 25, where the small strain result rises above the finite strain result based on matching the compressive
stress–strain curve. Here the wrinkling wavelengths become smaller compared to the wall thickness, so that
errors due to the approximations of the shell theory start to become noticeable.

5. When comparing the critical bending strains from the experiments and the analyses in Fig. 3, it is seen
that the Kyriakides and Ju results fit the experimental data slightly better than any of the finite strain
analyses. Specifically, if the finite strain analysis is based on matching the compressive stress–strain curve,
the (limit point) ovalisation buckling strains are underestimated slightly compared to the test data, and if
the finite strain analysis is based on matching the true stress–strain curve, it overestimates the critical strains

Fig. 3. Comparison of calculated critical strains (defined as the limit point or bifurcation strain, whichever is smallest) with experi-

mental results from Kyriakides and Ju.

2 The moment curvature diagram is typically quite flat at the limit point, so that a small difference in apparent stiffness can make a

much more significant difference in the bending strain at which the maximum moment (limit point) occurs.
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slightly in the (bifurcation) wrinkling region. Paradoxically, despite this, the present analysis gives a better
prediction of the limit-point-to-bifurcation cross-over point. Generally the differences being examined here
are quite small. They could be due to other factors, such as variability in the stress–strain curves. It must
also be remembered both the small and finite strain plasticity theories, represent rather idealised views of
multiaxial material behaviour, when compared to experimental observations such as those collected in
Hecker (1976).

Finally the half wavelengths of the critical bifurcation modes are shown in Fig. 4. Here the agreement
with the experimental results improves slightly, when one does not rely on the approximations of thin shells
or small deformations. However the predictions are still significantly higher than the experimental obser-
vations of the buckling wavelength. The reasons for this are not clear. Certainly the behaviour of metals
under multiaxial and non-proportional loading is quite complex (Hecker, 1976). It is certainly conceivable
that the relatively simple material idealisation used provides good predictions of one parameter (the critical
strain), but not of another.

5. Closing remarks

For plastic bending of the aluminum tubes considered here, it is clear that the approximations of thin
shell theory and small strains are good. In this case, the finite strain three-dimensional continuum analysis
presented here could be considered an optional refinement. It does improve the predictions of the buckling
wavelengths, but not sufficiently to account for the differences between analysis and experiment. Thus some
other phenomenon must be responsible for the shorter buckling wavelengths from the experiments. In view
of the care taken in the experimental work, and any questions regarding geometric/kinematic approxi-
mations made in the analysis now being removed, the only reasonable explanation for the discrepancy in
the wrinkling wavelengths is that the real material response under non-proportional loading that differs
from the idealisation used based on the J2 deformation and flow theories of plasticity.

For some materials, the stress–strain curves become very flat at low strains. Finite strain effects then also
play a role at lower strains. For instance in tensile coupon tests on longitudinal specimen taken from some
13% Cr stainless steel pipes, the ultimate (i.e. maximum load) condition is reached at strains as low as 2%.

Fig. 4. Comparison of calculated critical wrinkling wavelengths with experimental results from Kyriakides and Ju.
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Using this same stress–strain curve 3 for the finite element calculations of the critical bending strains, yields
limit and bifurcation strains larger than the ultimate value of 2%, for sufficiently thick-walled pipes in
bending. This not only indicates no wrinkling on the compression side until beyond ultimate, but also no
necking on the tension side of the bent pipe. Just like wrinkling, incipient necking is also detected as a
bifurcation when using the GPE elements described here. Clearly it would not make sense to attempt this
sort of prediction relying on the theory of thin shells with small strains.

Appendix A. Formulation of generalised plane strain finite element with bifurcation check

The analyses reported in this paper are based on (a) a prebuckling solution based on a GPE formulation,
and (b) a bifurcation check that includes wrinkling-type modes involving a sinusoidal variation in the axial
direction. The formulation presented here is applicable for straight or curved beams of arbitrary cross-
section, provided that the prebuckling solution involves conditions that are constant from one cross-section
to the next along the length of the beam. For this reason the term ‘‘beam’’ is used in this appendix rather
than ‘‘pipe’’. In this context a pipe is merely a special case of a beam. Axial loads and internal pressure or
other uniform loads can also be introduced, provided a provision is made by the nodal boundary conditions
to generate the required reactions to such loads while maintaining constant conditions along the length of
the pipe. (For instance an axial load must be accompanied by a transverse reaction equal to the axial load
divided by the radius of curvature in the deformed configuration.)

Although the GPE formulation for prebuckling is not new (Cook, 1989; HKS, 1989; Boussaa et al., 1995,
1996), it is briefly outlined here to set the scene for the formulation of the bifurcation analysis, involving
buckling modes with a sinusoidal variation along the length of the beam.

A.1. Prebuckling deformation kinematics

Consider a beam of arbitrary, but constant cross-section consisting of a number of material fibres
running along the length of the beam (i.e. normal to the cross-sections). The deformation of the beam is
assumed to occur in a fixed plane of deformation, such that all fibres remain parallel to this plane of de-
formation. A coordinate x is measured normal to the plane of deformation, and the unit normal vector to
the plane of deformation is denoted by tx:

Within the plane of deformation a reference line is defined of length l, and uniform curvature h=l where h
is the rotation of one end of the reference line with respect to the other. Thus the reference line is a segment
of a circle, lying in the plane of deformation. One of the ends of the reference line will be labelled ‘‘the
beginning’’ and the ‘‘the end’’. A unit vector tangent to the reference line and pointing from its beginning
towards its end is denoted by tz. The angle h is taken to be positive whenever the unit vector tz undergoes
positive rotation about the x axis (in the sense of the right-hand rule) as one moves from the beginning
towards the end of the reference line. The length of the reference line l and its bend angle h may vary as a
function of time. This is indicated by the notation,

l ¼ lðtÞ; h ¼ hðtÞ; ðA:1Þ

where t denotes time. Thus the position of the reference line changes in time. For simplicity, however, the
position and orientation of the beginning of the reference line will be taken to be fixed in space. (There is no
loss of generality in this, since rigid body motions can always be applied and do not change the state of

3 Up to ultimate, a piecewise linear representation based on the actual values recorded during the coupon test is used. Beyond

ultimate, a Ramberg–Osgood power law relationship between the true stress and logarithmic plastic strain is used to extend the stress–

strain relationship with the parameters of the power law chosen to match the stress and tangent moduli at ultimate.
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deformation or stress.) Let tzðaÞ be a unit vector obtained by rotating the tangent to the reference line at its
beginning by an angle a about the x-axis. Thus the tangent to the reference line at its beginning is tzð0Þ, and
at its end it is tzðhÞ: Futhermore, let z denote an arclength coordinate along this reference line, with z ¼ 0 at
the beginning of the reference line, and z ¼ l at the end of the reference line. The position vector of a point a
distance z along the reference line will be denoted by

r ¼ r̂rðz; l; hÞ ðA:2Þ

The unit tangent vector to the reference line pointing in the direction of increasing z can then be written as,

r̂r;z ¼ tz
zh
l

� �
ðA:3Þ

where a comma followed by a subscript denotes differentiation with respect to the variable appearing as a
subscript. Finally a unit vector ty ¼ tyðaÞ can be defined by the vector cross product as

tyðaÞ ¼ tzðaÞ � tx ðA:4Þ

Thus, for positive h, ty ¼ tyðzh=lÞ is a unit vector lying in the plane of deformation, normal to the reference
line, and pointing towards the convex side of the reference line. As a result of these definitions, tx; ty ; and tz
form a proper orthonormal triad. It further follows from geometry that,

t0yðaÞ ¼ tzðaÞ; t0zðaÞ ¼ �tyðaÞ 8 a ðA:5Þ

where a prime denotes differentiation with respect to the argument (i.e. with respect to the angle a). The
position vector of an arbitrary point ðx; y; zÞ can now be written as

p̂pðx; y; z; tÞ ¼ r̂rðz; lðtÞ; hðtÞÞ þ xtx þ yty
zhðtÞ
lðtÞ

� �
ðA:6Þ

Thus the coordinates ðx; yÞ define the location of the point under consideration on the cross-section, and z
defines the location of the cross-section in terms of arclength distance along the reference line. Note that
ðx; y; zÞ represent curvilinear coordinates rather than the usual cartesian coordinates. Furthermore this
curvilinear coordinate system is always orthogonal, but changes as a function of time, according to lðtÞ and
hðtÞ.

In order to describe the deformation of the system, consider first the undeformed configuration corre-
sponding to time t ¼ 0: Let L and H denote the values of l and h before deformation. Thus

L ¼ lð0Þ; H ¼ hð0Þ ðA:7Þ
For an initially straight beam segment, one would have H ¼ 0 and L would be the initial length of the beam
segment. (Generally upper case symbols will be used for the undeformed configuration and lower case
symbols for the deformed configuration.) The position vector of a point ðX ; Y ; ZÞ before deformation can
be written as

PðX ; Y ; ZÞ ¼ p̂pðX ; Y ; Z; 0Þ ¼ r̂rðZ; L;HÞ þ X tx þ Y ty
ZH
L

� �
ðA:8Þ

Thus the coordinates ðX ; Y ; ZÞ label a material point before deformation. The position vector of the same
material point after a uniform deformation can be defined by Eq. (A.6) with

x ¼ X þ uðX ; Y ; tÞ; y ¼ Y þ vðX ; Y ; tÞ; z ¼ ZlðtÞ=L ðA:9Þ

lðtÞ ¼ Lþ W ðtÞ; hðtÞ ¼ H þ /ðtÞ ðA:10Þ
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where u ¼ uðX ; Y ; tÞ and v ¼ vðX ; Y ; tÞ are cross-sectional displacement components that describe the dis-
tortion of the cross-section, W ðtÞ represents the elongation of the reference line, and /ðtÞ is the rotation at
the end of the beam. The coordinates ðX ; Y ; ZÞ provide a label for a specific material point. By substituting
Eqs. (A.9) and (A.10) into Eq. (A.6), this position vector of the same material point ðX ; Y ; ZÞ after de-
formation can then be written as

pðX ; Y ; Z; tÞ ¼ r̂r
ZlðtÞ
L

; L
�

þ W ðtÞ;H þ /ðtÞ
�
þ ðX þ uðX ; Y ; tÞÞtx þ ðY þ vðX ; Y ; tÞÞty

Z
L

hðtÞ
� �

ðA:11Þ

The above fully defines the deformation in terms of the cross-sectional displacements u ¼ uðX ; Y ; tÞ and
v ¼ vðX ; Y ; tÞ in the x and y directions respectively, the elongation of the reference line W ¼ W ðtÞ, and the
end rotation / ¼ /ðtÞ.

For the discretisation, a two-dimensional finite element mesh is used in the x–y plane, to interpolate the
displacements u and v between nodal values of these displacements, and in addition an extra node is in-
troduced, for which the degrees of freedom are W and /, and the coordinates are L and H. All elements are
attached to this same node, as well as being attached to each other in the usual way.

The deformation gradient tensor can be written as

F ¼ p;XTx þ p;YTy þ p;ZðL=AzÞTz ðA:12Þ

where

Tx ¼ tx; Ty ¼ tyðHZ=LÞ; Tz ¼ tzðHZ=LÞ ðA:13Þ

are the unit vectors tx, ty , tz for the undeformed configuration and,

Az ¼ LkP;Zk ¼ Lþ YH ðA:14Þ

is the undeformed length of a fibre of the beam.
The Green–Lagrange strain tensor is given by,

E ¼ 1
2
ðFT 
 F� 1Þ ðA:15Þ

where 1 represents the unit tensor. Evaluating this yields,

E ¼ ExxTxTx þ EyyTyTy þ ExyðTxTy þ TyTxÞ þ EzzTzTz ðA:16Þ

where

Exx ¼ u;X þ 1
2
ðu2

;X þ v2
;X Þ ðA:17Þ

Eyy ¼ v;Y þ 1
2
ðu2

;Y þ v2
;Y Þ ðA:18Þ

2Exy ¼ u;Y þ v;X þ u;X u;Y þ v;X v;Y ðA:19Þ

Ezz ¼ ez þ 1
2
e2
z ; ðA:20aÞ

ez ¼
W þ Hvþ /ðY þ vÞ

Az
ðA:20bÞ

The finite element procedures are derived directly by standard methods from these expressions for the
strains, based on the principle of virtual displacements in the form,
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dW ¼
Z

X
ðsxxdExx þ syydEyy þ szzdEzz þ 2sxydExyÞAzdXdY ðA:21Þ

in which dW denotes the virtual work performed by the applied loads; X denotes the undeformed cross-
section; dExx; etc. are the virtual strains (variations in the strains Exx etc. associated with the virtual dis-
placement field); and sxx are the components of the second Piola Kirchhoff stress tensor given by

S ¼ sxxTxTx þ syyTyTy þ szzTzTz þ sxyðTxTy þ TyTxÞ ðA:22Þ

Note that the virtual work integral has been reduced to an integral over the undeformed cross-section X,
since the strain components are not a function of the axial coordinate Z.

The discretisation used in the analyses reported herein is based on the 4-node isoparametric element with
a single integration point at its centre and hourglass control such as described in Belytschko and Ong, 1984.
The amount of hourglass control used was such that the bending stiffness of a square element would be
0.1% of the correct stiffness in the elastic range. It was also verified for some examples that changing this
hourglass control stiffness by a factor of 10 did not produce significant changes in the results.

A.2. Bifurcation check

For the prebuckling solution, the only needed displacement components were the cross-sectional dis-
placements u ¼ uðX ; Y ; tÞ and v ¼ vðX ; Y ; tÞ, and the ‘‘displacements’’ describing the change in length and
curvature of the beam, W ¼ W ðtÞ and / ¼ /ðtÞ, respectively. For the bifurcation check, however, a more
general displacement field needs to be considered. For this purpose, the cross-sectional displacements u and
v are also allowed to vary as a function of the axial coordinate Z, and an axial displacement
w ¼ wðX ; Y ; Z; tÞ needs to be introduced. Thus for a general deformation, the position vector of a material
point ðX ; Y ; ZÞ after deformation can be written as,

pðX ; Y ; Z; tÞ ¼ r̂r
Zl
L
; l; h

� �
þ ðX þ uÞtx þ ðY þ vÞty

Zh
L

� �
þ wtz

Zh
L

� �
ðA:23Þ

where now

u ¼ uðX ; Y ; Z; tÞ; v ¼ ðX ; Y ; Z; tÞ; w ¼ wðX ; Y ; Z; tÞ ðA:24Þ
Note that Eq. (A.23) now supersedes Eq. (A.11), since Eq. (A.11) describes a deformation that is uniform
along the length of the beam, whereas Eq. (A.23) describes a fully general deformation. This means that all
previous results relying on Eq. (A.11) are no longer applicable. Indeed of the previous results, only Eqs.
(A.1)–(A.8), (A.10), (A.12) and (A.13)–(A.15) still apply. The others need to be re-derived for the more
general deformation of Eq. (A.23). Proceeding in a similar way as before, but with the more general de-
formation gives

E ¼ ExxTxTx þ EyyTyTy þ EzzTzTz þ ExyðTxTy þ TyTxÞ þ ExzðTxTz þ TzTxÞ þ EyzðTyTz þ TzTyÞ ðA:25Þ
for the Green–Lagrange strain tensor, in which

Exx ¼ u;X þ 1
2
ðu2

;X þ v2
;X þ w2

;X Þ ðA:26Þ

Eyy ¼ v;Y þ 1
2
ðu2

;Y þ v2
;Y þ w2

;Y Þ ðA:27Þ

Ezz ¼
L2

A2
z

u2
;Z

(
þ v;Z

�
� h
L
w
�2

þ az
L

�
þ w;Z

�2

� A2
z

L2

)
ðA:28Þ
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2Exy ¼ u;Y þ v;X þ u;X u;Y þ v;X v;Y þ w;Xw;Y ðA:29Þ

2Exz ¼
L
Az

ð1



þ u;X Þu;Z þ v;X v;Z

�
� h
L
w
�
þ w;Y

aZ
L

�
þ w;Z

��
ðA:30Þ

2Eyz ¼
L
Az

u;Y u;Z



þ ð1 þ v;yÞ v;Z

�
� h
L
w
�
þ w;Y

aZ
L

�
þ w;Z

��
ðA:31Þ

where

az ¼ lþ hy ¼ Lþ W þ ðH þ /ÞðY þ vÞ ðA:32Þ
The variational form of the bifurcation condition can be written as (Hutchinson, 1974)

d ~WW ¼
Z

X

Z L

0

ðLijkl ~EEkldEij þ sijd ~EEijÞ
Az

L
dZ dX dY ðA:33Þ

in which summation over repeated indecies i, j, k and l is implied with each index taking a value ‘‘x’’, ‘‘y’’,
or ‘‘z’’; W denotes the work done by the applied loads; Eij and sij are the components of the Green–
Lagrange strain tensor and the second Piola–Kirchhoff stress tensor, respectively, as before; a d or a tilde
applied to any entity (
) denotes a variation with respect to the displacement field u as in

dð
Þ ¼ ð
Þ;udu; ~ðð
Þ ¼ ð
Þ;u~uu; d ~ðð
Þ ¼ ð
Þ;uu~uudu ðA:34Þ

in which ð
Þ;u denotes a Fre�cchet derivative (or variation) of the quantity ð
Þ with respect to the displacement
field; du denotes the virtual displacement field; ~uu denotes the displacement field associated with the buckling
mode; and Lijkl are the incremental (tangent) moduli (as in _ssij ¼ Lijkl _EEkl, where a dot denotes the time-
derivative) based on the assumption that plastic loading occurs wherever plastic loading occurs for load
increments on the prebuckling solution path.

In general, the incremental moduli used in the bifurcation condition (Eq. (A.33)) should be the ones that
apply for the prebuckling solution under increasing applied load. However here the bifurcation check is
based on the Lijkl of deformation theory of plasticity, whereas the flow theory of plasticity is used for the
prebuckling solution. The incremental moduli for both theories may be obtained from Needleman and
Tvergaard (1977) 4. The reason for using the incremental moduli of the deformation theory for the bi-
furcation check is that this has been found to give better agreement with the experimental observations of
bifurcation buckling.

To evaluate the strain components and relevant variations of the strains in Eq. (A.23), the following
expressions for the buckling mode, and the virtual displacement field are used,

~uuðX ; Y ; ZÞ ¼ ~uuðX ; Y Þ cosðkZÞtx þ ~vvðX ; Y Þ cosðkZÞty
Z
L

h

� �
þ ~wwðX ; Y Þ sinðkZÞtz

Z
L

h

� �
ðA:35Þ

duðX ; Y ; ZÞ ¼ duðX ; Y Þ cosðkZÞtx þ dvðX ; Y Þ cosðkZÞty
Z
L

h

� �
þ dwðX ; Y Þ sinðkZÞtz

Z
L

h

� �
þ OT

ðA:36Þ
in which OT denotes ‘‘orthogonal terms’’ which vanish upon integration with respect to Z in Eq. (A.32);
and k is the wave number of the buckling mode (with respect to undeformed length along the reference

4 Note, however, that some translation of notation is required, because here Lijkl denotes the components of a 4th-order tensor

relating the convective rate of the Kirchhoff stress tensor to the rate of deformation tensor, which is not the same as what Needleman

and Tvergaard (1977) denote by Lijkl.
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line). Thus the buckling mode is defined by the displacement fields ~uu ¼ ~uuðX ; Y Þ, ~vv ¼ ~vvðX ; Y Þ and ~wwðX ; Y Þ,
and by the wave number k.

The wave number can be written as

k ¼ np
L

ðA:37Þ

where n is the number of half wavelengths within the length of beam considered. For an integer value of n,
the buckling mode is consistent with symmetry boundary conditions at both ends of the beam. For the
purpose of evaluating the integral in Eq. (A.32) with respect to Z, an integer value of n is assumed.
However, if end effects are not important, and one is interested in the critical buckling modes within a long
beam, one can use the same finite element formulation developed here with any value of L, and find the
wave number k for which the bifurcation occurs first, without restricting oneself to values of k given by Eq.
(A.36) for integer values of n.

Evaluating the variations of the strain components according to Eq. (A.33) gives,

dExx ¼ fð1 þ u;X Þdu;X þ v;xdv;Xg cosðkZÞ ðA:38Þ

dEyy ¼ fu;Y du;Y þ ð1 þ v;Y Þdv;Y g cosðkZÞ ðA:39Þ

dEzz ¼
L
Az

� �2 az
L

kdw
�

þ h
L

dv
�

cosðkZÞ ðA:40Þ

2dExy ¼ fð1 þ u;X Þdu;Y þ v;Xdv;Y þ u;Y du;X þ ð1 þ v;Y Þdv;Xg cosðkZÞ ðA:41Þ

2dExz ¼
L
Az



� ð1 þ u;X Þkdu� v;X kdv

�
þ h
L

dw
�
þ az

L
dw;X

�
sinðkZÞ ðA:42Þ

2dEyz ¼
L
Az



� u;Y kdu� ð1 þ v;Y Þ kdv

�
þ h
L

dw
�
þ az

L
dw;Y

�
sinðkZÞ ðA:43Þ

in which u ¼ uðX ; Y Þ and v ¼ vðX ; Y Þ are the prebuckling displacements; the derivative with respect to the
coordinates X and Y are denoted by ð
Þ;X and ð
Þ;Y respectively; Az is given by Eq. (A.14), and az by Eq.
(A.32).

The quantities ~EEij (linearised strain increments associated with the buckling mode) may also be calculated
from Eqs. (A.37)–(A.42), by replacing du, dv and dw by ~uu, ~vv and ~ww, respectively. Finally for the second
variations of the strain components Eij with respect to the displacements one obtains,Z L

0

d ~EExxdZ ¼ L
2

~uu;Xdu;X
n

þ ~vv;Xdv;X þ ~ww;Xdw;X

o
ðA:44Þ

Z L

0

d ~EEyydZ ¼ L
2
f~uu;Y du;Y þ ~vv;Y dv;Y þ ~ww;Y dw;Y g ðA:45Þ

Z L

0

d ~EEzzdZ ¼ L
2

L
Az

� �2

k2du~uu



þ kdv
�

þ h
L

dw
�

k~vv
�

þ h
L
~ww
�
þ kdw
�

þ h
L

dv
�

k ~ww
�

þ h
L
~vv
��

ðA:46Þ

Z L

0

2d ~EExydZ ¼ L
2
fdu;X ~uu;Y þ ~uu;Xdu;Y þ dv;X ~vv;Y þ ~vv;Xdv;Y þ dw;X ~ww;Y þ ~ww;Xdw;Y g ðA:47Þ

Z L

0

d ~EExzdZ ¼
Z L

0

d ~EEyzdZ ¼ 0 ðA:48Þ
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Using the interpolation scheme of the two-dimensional finite element discretisation of the cross-section to
define the buckling mode displacements ~uu ¼ ~uuðX ; Y Þ, ~vv ¼ ~vvðX ; Y Þ; and ~ww ¼ ~wwðX ; Y Þ in terms of nodal values
of the buckling mode displacements, proceeding in a similar manner for the virtual displacements
du ¼ duðX ; Y Þ, dv ¼ dvðX ; Y Þ and dw ¼ dwðX ; Y Þ, and substituting these expressions for the strain varia-
tions into the variational form of the bifurcation condition (Eq. (A.33)), one obtains the stability condition
in the usual matrix form.

Note that three degrees of freedom per node are involved for the stability check, as opposed to two for
the prebuckling solution. On the other hand, the buckling mode does not involve deformations of the
reference line, so that the degrees of freedom associated with the deformations of the reference line (dis-
placements W and / of the extra node) are not needed for the bifurcation check.

The OT in Eq. (A.36) deserve some comment. These represent virtual displacements fields that can be
written in the same form of Eq. (A.36), but for a value of the wave number k corresponding to a different
integer n in Eq. (A.37). By adding such terms one can represent any admissible virtual displacement field,
yet the contribution of such terms vanishes upon integration with respect to Z in Eq. (A.32). As a result the
variational bifurcation condition is satisfied not just for virtual displacements with the same sort of sinu-
soidal variation as the buckling mode, but for any admissible virtual displacement. This means that the
exact buckling mode is indeed in the form of Eq. (A.34). i.e. the form of sinusoidal variations of the
buckling mode chosen is not an approximation, but rather the exact solution. The only approximation is
due to the discretisation of the cross-section.

With a method to calculate the stability matrix in place, one still needs a practical strategy of finding the
bifurcation point, i.e. the point where the stability matrix first loses the positive definite property. For this
purpose, the stability matrix is evaluated at each loadstep of the prebuckling solution for various values of
the wave number k, and checked for any negative eigenvalues. (In this context a ‘‘loadstep’’ means a
converged solution to the prebuckling problem.) Once a negative eigenvalue is detected during the facto-
risation of the stability matrix, the minimum eigenvalue of the stability matrix for each wave number is
calculated, in order to generate a plot of the minimum eigenvalue as a function of the wave number k (or as
a function of the logarithm of the wave number). The minimum of this plot can be found by interpolating
with a parabola, fitted to the lowest point on this plot and the adjacent points to each side. The critical wave
number and the interpolated minimum eigenvalue are then determined from the point where this parabola
reaches a minimum value. This calculation is repeated for the loadsteps that straddle the bifurcation point.
(i.e. the point where the interpolated minimum eigenvalue is zero.) Finally one can use linear interpolation
between the straddling loadsteps to determine the interpolated location of the bifurcation point. If nec-
essary one can improve the approximation, by restarting the analysis, and calculating the eigenvalues of the
stability matrix for more densely spaced values of the wave number and/or for smaller load increments of
the prebuckling solution.

In the calculations reported in this paper, the increment in the nominal bending strain at each loadstep
was 0.01%, and the wave numbers for which the stability matrix was evaluated differed by 10% or less
(using evenly spaced values of the logarithm of the wave number, and assuming for the purpose of in-
terpolation that the minimum eigenvalue of the stability matrix is a quadratic function of the logarithm of
the wave number). Under such conditions refinement of the search for the critical bifurcation point is not
considered necessary.
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